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Abstract

Category-level object pose estimation aims to determine the
pose and size of arbitrary objects within given categories.
Existing two-stage correspondence-based methods first es-
tablish correspondences between camera and object coor-
dinates, and then acquire the object pose using a pose fitting
algorithm. In this paper, we conduct a comprehensive anal-
ysis of this paradigm and introduce two crucial essentials:
1) shape-sensitive and pose-invariant feature extraction for
accurate correspondence prediction, and 2) outlier corre-
spondence removal for robust pose fitting. Based on these
insights, we propose a simple yet effective correspondence-
based method called SpotPose, which includes two stages.
During the correspondence prediction stage, pose-invariant
geometric structure of objects is thoroughly exploited to fa-
cilitate shape-sensitive holistic interaction among keypoint-
wise features. During the pose fitting stage, outlier scores
of correspondences are explicitly predicted to facilitate ef-
ficient identification and removal of outliers. Experimental
results on CAMERA25, REAL275 and HouseCat6D bench-
marks demonstrate that the proposed SpotPose outperforms
state-of-the-art approaches by a large margin.

1. Introduction

Category-level object pose estimation is one of the funda-
mental tasks in robotic vision, which aims to predict the 6D
pose and 3D size of arbitrary objects in the given categories.
This task has received increasing attention from the research
community due to its broad applications in augmented real-
ity [18, 26], robotic manipulation [17, 35], and hand-object
interaction [15, 25]. Compared to traditional instance-level
approaches [20, 30, 31], category-level approaches do not
require a CAD model for each object instance, providing
stronger generalization in real-world scenarios.

*Corresponding author. Website: renhuan1999.github.io/SpotPose.
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Figure 1. Reconsideration of the two-stage correspondence-based
paradigm. (a) Essential of shape-sensitive and pose-invariant fea-
tures during the correspondence prediction stage. (b) Essential of
outlier correspondence removal during the pose fitting stage.

Most existing category-level methods [1, 12, 14, 24, 27]
adopt a two-stage correspondence-based paradigm, which
first establishes correspondences between the camera coor-
dinate space and the Normalized Object Coordinate Space
(NOCS) [32], and subsequently determines the object pose
through a pose fitting algorithm. We conduct an in-depth
analysis of this paradigm and introduce two crucial insights.
(1) During the correspondence prediction stage, shape-
sensitive and pose-invariant features are fundamental.
Since there are significant shape variations among diverse
objects within the same category, shape-sensitive features
should be exploited to learn object-specific transformation.
As shown in Figure 1(a), points on camera lenses of varying
lengths ought to be mapped to different NOCS coordinates.
Besides, since the specific object might be observed from
arbitrary poses, pose-invariant features should be extracted
to learn pose-irrelevant transformation. As illustrated in
Figure 1(a), a static point on the camera lens under varying
poses ought to be mapped to the same NOCS coordinates.
(2) During the pose fitting stage, the removal of outlier
correspondences is essential. Noise in the object segmen-
tation mask and depth camera sensor can yield outlier points
within the observed object point cloud. These outlier points,
combined with inaccurate correspondence predictions, lead
to outlier correspondences that have a detrimental impact
on the pose fitting process. Therefore, a robust pose fitting
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algorithm is desired to eliminate the interference of outliers.
As illustrated in Figure 1(b), the rotation fitting error is re-
duced from 8.4° to 2.2° after an outlier removal process.

Despite the considerable progress achieved by previous
methods, they either overlook these two crucial essentials
or instead resort to complicated and inefficient designs.
(1) During the correspondence prediction stage, point-wise
features of observed objects are extracted and then mapped
to the NOCS coordinates. However, existing approaches
typically employ general-purpose point cloud backbones
without pose-invariance, e.g., the widely deployed Point-
Net++ [22] incorporates absolute coordinates and yields in-
herently pose-sensitive features. Furthermore, point-wise
features lack sufficient interaction with each other from a
holistic perspective, thereby limiting their shape-sensitivity.
Consequently, these methods struggle with transformation
learning and instead depend on complicated and inefficient
designs, e.g., category-level shape priors [1, 12, 27], shape
augmentation [34], and auxiliary feature enhancers [16].
(2) During the pose fitting stage, early approaches [27, 32]
employ the Umeyama algorithm [28] to solve the object
pose with the Random Sample Consensus (RANSAC) algo-
rithm [6] for outlier removal. However, RANSAC requires
numerous iterations to find an accurate pose while exclud-
ing outliers, leading to slow convergence. Instead, recent
methods [12, 14, 16] utilize an MLP-based deep estimator
to directly regress the object pose from correspondences,
which can benefit from end-to-end supervised training on
the final objectives. Nevertheless, they exhibit limited ro-
bustness to outlier correspondences, as all correspondences
are taken for regression without any filtering.

Motivated by the above discussions, we propose a simple
yet effective two-stage correspondence-based approach for
category-level object pose estimation, named as SpotPose,
where Shape-sensitive and Pose-invariant features are first
inherently extracted to facilitate correspondence prediction,
followed by efficient identification and removal of OuTlier
correspondences to enable robust and accurate pose fitting.
(1) During the correspondence prediction stage, point-wise
features are densely extracted from RGB-D observations,
where PointNet++ [22] is adapted to extract pose-invariant
point cloud features by incorporating a T-Net [21] to align
the input point cloud while eliminating the injection of ab-
solute coordinates. Afterwards, we represent object shapes
with a set of sparse keypoints, and further leverage the
pose-invariant geometric descriptor [23] to facilitate shape-
sensitive holistic interaction among keypoint-wise features.
Benefiting from the extraction of shape-sensitive and pose-
invariant features, transformation between the camera and
object coordinate spaces becomes more readily learned.
(2) During the pose fitting stage, due to noise in the ob-
servations or predictions, there exist outliers in the derived
correspondences that are harmful to the pose fitting process.

To this end, we just utilize a lightweight outlier predictor
to distinguish between inliers and outliers, and then solve
the object pose based solely on inlier correspondences with
the Umeyama algorithm [28]. Through this intuitive outlier
removal process, we achieve comparable pose fitting per-
formance without the need for the RANSAC algorithm [6],
while maintaining a fast inference speed.

The main contributions of this work can be summarized
as follows: (1) We conduct a comprehensive analysis of
the existing two-stage correspondence-based paradigm for
category-level object pose estimation and introduce two
crucial essentials. (2) We propose a simple yet effective
approach which extracts shape-sensitive and pose-invariant
features during the correspondence prediction stage to facil-
itate transformation learning, and efficiently removes out-
lier correspondences during the pose fitting stage to ensure
robust pose estimation. (3) Extensive experimental results
on existing benchmarks demonstrate the superior perfor-
mance of our method over state-of-the-art approaches.

2. Related Work
In this section, we briefly overview direct regression-based
and correspondence-based category-level object pose esti-
mation methods.
Direct Regression-based Methods. This group of methods
adopts a single-stage paradigm, which directly regresses the
object pose in an end-to-end manner after feature extraction
from object observations. FS-Net [2] employs a 3D graph
convolution (3DGC) autoencoder for orientation feature ex-
traction and decouples the rotation into two orthogonal vec-
tors to handle symmetric objects. GPV-Pose [4] and HS-
Pose [37] enhance pose-sensitive feature extraction by fo-
cusing on geometric consistency and local-global geomet-
ric structure perception, respectively. VI-Net [13] proposes
an innovative rotation estimation network that simplifies the
task on the sphere by decoupling the rotation into viewpoint
and in-plane components, while SecondPose [3] further im-
proves it by leveraging SE(3)-consistent semantics and ge-
ometric feature extraction. Although conceptually simple,
these methods struggle with pose-sensitive feature learning
due to the non-linearity of the full SE(3) space.
Correspondence-based Methods. This group of methods
adopts a two-stage paradigm, which first establishes cor-
respondences between camera and object coordinates, and
then derives the object pose through a pose fitting algorithm.
During the correspondence prediction stage, the Normal-
ized Object Coordinate Space (NOCS) is introduced in [32]
as a shared canonical representation to align diverse object
instances in a given category. SPD [27] and its subsequent
works [1, 12, 33] reconstruct 3D object models by deform-
ing a pre-learned categorical shape prior, and then predict
correspondences between the observed and reconstructed
object point clouds. However, acquiring the priors requires



collecting numerous CAD models, which is labor-intensive.
Query6DoF [34] and IST-Net [16] eliminate the need for
explicit shape priors through implicit queries and implicit
space transformation, respectively, but still rely on com-
plicated shape augmentation or auxiliary feature enhancers.
These methods disregard shape-sensitive and pose-invariant
feature extraction, struggling with transformation learning.
During the pose fitting stage, early approaches [1, 27, 32]
adopt the Umeyama algorithm [28] to solve the object pose,
combined with the RANSAC algorithm [6] to mitigate the
interference of outlier correspondences. Nevertheless, the
RANSAC algorithm requires massive iterations to produce
a fitting pose with enough inliers while excluding outliers,
which suffers from slow convergence. DPDN [12] presents
a pose and size estimator to directly regress the object
pose and size from correspondences, which is composed of
MLPs and average pooling operations. It can benefit from
end-to-end supervised training on the final pose and size
objectives, rather than solely on the surrogate correspon-
dences. However, since all correspondences are employed
for regression without any filtering, the deep estimator ex-
hibits limited robustness to outlier correspondences.

3. Method
Task Definition. Given an RGB-D image, we first utilize an
offline Mask R-CNN [7] to acquire instance segmentation
masks, yielding the cropped RGB image Iobj ∈ RH×W×3

and segmented depth image for each instance. The partially
observed object point cloud P obj ∈ RNobj×3 is then de-
rived from the segmented depth image by back-projecting
and downsampling, where Nobj is the number of points.
Taking Iobj and P obj as inputs, our method aims to pre-
dict the rotation R ∈ SO(3), translation t ∈ R3, and size
s ∈ R3 of the observed instance in the given categories.
Overview. As illustrated in Figure 2, the proposed method
consists of three components, which include dense feature
extraction (Section 3.1), sparse feature interaction (Sec-
tion 3.2) and robust pose and size estimation (Section 3.3).
In Section 3.4, we further discuss the distinctions between
our SpotPose and the most relevant method, AG-Pose [14].

3.1. Dense Feature Extraction
We start with dense point-wise feature extraction with pose-
invariance, which integrates the two modalities in a dense
fusion manner [30]. For the point cloud P obj, we extract
pose-invariant geometric features via PoseInv-PointNet++,
which is an adapted variant of PointNet++ [22]. In detail,
a T-Net [21] is incorporated to predict an affine transforma-
tion matrix T ∈ R3×3 from P obj, which aligns the input
point cloud before feeding it into PointNet++. Moreover,
the injection of absolute coordinates is also excluded from
the original PointNet++ to ensure pose-invariant feature ex-
traction. As for the image Iobj, we follow SecondPose [3]

to employ DINOv2 [19] to extract pose-consistent semantic
features, followed by point-wise selection with P obj. The
final dense point-wise features F obj ∈ RNobj×D are then
derived by point-wise concatenation of the image and point
cloud features, with feature dimension reduction to D.

3.2. Sparse Feature Interaction
After extracting the point-wise features, we further enhance
their shape-sensitivity through holistic feature interaction.
However, due to the large number of points, the interaction
among dense point-wise features incurs significant compu-
tational overhead. Therefore, inspired by AG-Pose [14],
we represent object shapes with a set of sparse keypoints,
enabling more computationally friendly feature interaction.
Concretely, Farthest Point Sampling (FPS) is applied on
P obj to retrieve a set of sparse keypoints P ∈ RN×3, and
the corresponding keypoint-wise features F kpt ∈ RN×D

are indexed from F obj, where N denotes the number of
keypoints. The pose-invariant distance- and angle-based ge-
ometric descriptor [23] is then leveraged to perform shape-
sensitive comprehensive interaction among F kpt and F obj.
This process involves L geometric interaction blocks, each
consisting of a local geometric cross-attention layer and a
global geometric self-attention layer, as detailed below.
Distance- and Angle-based Geometric Descriptor. Given
a keypoint Pn and its attended points P att ∈ RNatt×3, the
geometric structure embedding between Pn and P att

m con-
sists of a pair-wise distance embedding and a K-wise an-
gle embedding, where Natt is the number of the attended
points. The distance embedding Edis

n,m is computed by ap-
plying a sinusoidal function [29] on ∥P att

m − Pn∥2/σdis,
where σdis is a distance hyper-parameter. As for the an-
gle embedding, the K nearest neighbors P knn ∈ RK×3 of
Pn is first selected from P att. The K-wise angle embed-
ding Eang

n,m,k is then computed with a sinusoidal function
on ∠(P knn

k −Pn,P
att
m −Pn)/σ

ang, where σang is a angle
hyper-parameter. Finally, the geometric structure embed-
ding En,m ∈ RD is formulated as:

En,m = Edis
n,mW dis +max

k
{Eang

n,m,kW
ang}, (1)

where W dis,W ang ∈ RD×D are the projection matrices.
Due to the pose-invariance of the pair-wise distance and
K-wise angle, the geometric structure embedding En,m is
thus pose-invariant. For more details, please refer to [23].
Local Geometric Cross-Attention. Since the sparse key-
points P are an abstract subset of the dense points P obj and
lack local geometric details, we first aggregate local context
information into keypoint features with a local geometric
cross-attention layer in each geometric interaction block.
Specifically, for the n-th keypoint Pn, its K local nearest
neighbors P obj

knn(n) ∈ RKlocal×3 are first selected within

P obj, and the corresponding features F obj
knn(n) ∈ RKlocal×D
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Figure 2. (a) Overview of the proposed SpotPose. Given the observation Iobj and P obj, dense point-wise features F obj are first extracted
with pose-invariance. Subsequently, the object shape is represented by a set of sparse keypoints P , whose features F are enhanced with
shape-sensitivity through L geometric interaction blocks. The final pose {R, t} is derived from keypoint-wise correspondences after outlier
removal, while the size s is directly regressed. (b) The PoseInv-PointNet++ is adapted from PointNet++ to extract pose-invariant point
cloud features. (c) The local geometric cross-attention layer aims to enrich sparse keypoint-wise features with local context information
from dense points. (d) The global geometric self-attention layer aims to holistically enhance keypoint-wise features with shape-sensitivity.

are retrieved from F obj. Then, the local geometric descrip-
tor Elocal

n ∈ RKlocal×D is computed using Equation (1),
with the attended points P obj

knn(n) and K local-wise angle. In
the l-th block, the n-th locally enhanced keypoint feature
F local
l,n ∈ RD is derived with the attention mechanism [29]

that incorporates geometric information, formulated as:

F local
l,n =GCA(F global

l−1,n ,F obj
knn(n),E

local
n ) + F global

l−1,n ,

l ∈ {1, . . . , L}, n ∈ {1, . . . , N},
(2)

where the initial input keypoint feature F global
0,n = F kpt

n and
GCA is the geometric cross-attention operation, defined as:

GCA(q,C,E) = Attention(q,C +E,C +E), (3)

Attention(Q,K,V ) = A× (V W V ), (4)

A = Softmax

((
QWQ

) (
KWK

)⊤
√
D

)
, (5)

where WQ,WK ,W V ∈ RD×D are the projection ma-
trices for query, key and value, respectively. Through the
local geometric interaction, the keypoint features F local

l ∈
RN×D are enhanced with the ability to represent local parts.

Global Geometric Self-Attention. After the local context
integration, we apply a global geometric self-attention layer
to facilitate shape-sensitive holistic interaction among the
keypoint features. Concretely, the n-th keypoint Pn attends
to all keypoints {Pm | m = 1, . . . , N} and the correspond-
ing global geometric structure embedding Eglobal

n,m ∈ RD is
computed using Equation (1) with the Kglobal-wise angle.
To yield the geometric descriptor Eglobal

n ∈ RD for the n-th
keypoint, we average Eglobal

n,m over m. Within the l-th block,
the globally enhanced keypoint features F global

l ∈ RN×D

are then derived with the geometric self-attention (GSA)
operation, and this process is formulated as follows:

F global
l =GSA(F local

l ,Eglobal) + F local
l ,

l ∈ {1, . . . , L},
(6)

GSA(C,E) = Attention(C +E,C +E,C +E), (7)

where the Attention operation is defined in Equation (4).
After L geometric interaction blocks, the final keypoint fea-
tures F = F global

L ∈ RN×D are acquired. Through the
local and global geometric interaction, keypoint features
are enhanced with shape-sensitivity, while retaining pose-



invariance owing to the pose-invariant geometric descriptor,
which facilitates subsequent transformation learning.

3.3. Robust Pose and Size Estimation
Outlier-aware Correspondence Prediction. Once shape-
sensitive and pose-invariant keypoint features are extracted,
we follow previous work [16] to predict the corresponding
NOCS coordinates S ∈ RN×3 from F with an MLP-based
NOCS predictor. The ground truth NOCS coordinates Sgt

are derived by applying the ground truth Rgt, tgt, sgt to the
keypoint coordinates P , which is formulated as below:

Sgt
n =

1

∥sgt∥2
(Rgt)⊤(Pn − tgt), n ∈ {1, . . . , N}, (8)

where ⊤ denotes the transpose operation. The NOCS loss
function is then defined as the keypoint-wise L2 distance:

Lnocs
n = ∥Sn − Sgt

n ∥2, n ∈ {1, . . . , N}. (9)

However, due to noise in the object segmentation mask and
depth camera sensor, the observed point cloud may contain
outlier points that deviate from the object surface. More-
over, inaccurate NOCS predictions can result in outlier cor-
respondences that are detrimental to the pose fitting process.
To this end, we further predict the outlier scores O ∈ RN

from F and P with an intuitive outlier predictor as follows:

O = Sigmoid(MLP([F ,MLP(P )])), (10)

where [:, :] indicates the feature concatenation operation.
To identify outlier points, we follow AG-Pose [14] to pro-
duce keypoint-wise Ogt

n based on the instance CAD model
P cad ∈ RNcad×3, which contains N cad points. In formula,

Ogt
n =

0, if min
m∈{1,...,Ncad}

∥Sgt
n − P cad

m ∥2 < η

1, otherwise
, (11)

where η is the outlier threshold. The final outlier-aware cor-
respondence loss function Lcorr is then formed by modulat-
ing the keypoint-wise NOCS loss Lnocs

n , defined as:

Lcorr
n =

{
InLnocs

n − λreg log In, Ogt
n = 0

In, Ogt
n = 1

, (12)

Lcorr =
1

N

N∑
n=1

Lcorr
n , (13)

where In = 1−On denotes the keypoint-wise inlier score,
and λreg is a hyper-parameter to balance the regularization.
Note that when Ogt

n = 1, On is directly constrained to be 1
to identify outlier keypoints. And when Ogt

n = 0, the first
term suppresses the inlier score In if Lnocs

n is large, which
in turn reduces the weight of Lnocs

n . The second term acts as

a regularizer to prevent the NOCS predictor from being lazy
and not learning at all. This loss function encourages the
network to prioritize correspondences that are easier to pre-
dict, while deferring constraints on more challenging corre-
spondences, which are then identified as outliers.
Pose and Size Estimation. Given the keypoint-wise cam-
era coordinates P , NOCS coordinates S, and outlier scores
O, we first apply a threshold 0.5 on O to filter out outliers.
The remaining inlier correspondences between P and S are
then utilized to solve the rotation R and translation t via the
Umeyama algorithm [28]. Through this intuitive outlier re-
moval process, robust pose fitting can be achieved without
relying on the time-consuming RANSAC algorithm [6]. As
for the estimation of object size s, we simply employ an
MLP-based size predictor for regression from the globally
averaged keypoint features AvgPool(F ) and utilize L2 loss
for supervision, which is written as:

Lsize = ∥s− sgt∥2. (14)

In summary, the overall loss function is as follows:

Lall = Lcorr + λsizeLsize, (15)

where λsize is a balancing hyper-parameter.

3.4. Discussion
In this section, we elaborate on the distinctions between
our SpotPose and AG-Pose [14], which both utilize a set
of sparse keypoints to represent object shapes and incorpo-
rate geometric information to establish keypoint-wise cor-
respondences. The primary differences lie in four aspects.
(1) In terms of keypoint selection, AG-Pose adaptively de-
tects sparse keypoints for different instances, but it fails to
provide a suitable shape representation at the early stage of
training. In contrast, we simply adopt the training-free far-
thest point sampling, reducing the risk of network collapse.
(2) With regard to holistic feature interaction, keypoint-wise
features in AG-Pose are simply concatenated with globally
averaged keypoint features, leaving limited feature interac-
tion with each other. By contrast, we leverage the attention
mechanism to enable thorough interaction among sparse
keypoint-wise features, enhancing their shape-sensitivity.
(3) As for geometric feature integration, AG-Pose employs
the relative position embedding as its geometric descriptor,
which is inherently pose-sensitive. We instead resort to the
pose-invariant distance- and angle-based geometric descrip-
tor, ensuring the pose-invariance of the aggregated features.
(4) With respect to outlier removal, AG-Pose constrains the
detected keypoints to lie on inlier object surfaces, and then
uses a deep estimator to regress the pose from all keypoints-
wise correspondences, which still suffers from outliers due
to noise in the predictions. In contrast, we explicitly predict
keypoint-wise outlier scores to directly identify and remove
outliers, leading to a more robust object pose estimation.



Table 1. Performance comparison with state-of-the-art methods on the REAL275 and CAMERA25 datasets.

Method
REAL275 CAMERA25

IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Direct Regression

DualPoseNet [11] 79.8 62.2 29.3 35.9 50.0 66.8 92.4 86.4 64.7 70.7 77.2 84.7
GPV-Pose [4] - 64.4 32.0 42.9 - 73.3 93.4 88.3 72.1 79.1 - 89.0
HS-Pose [37] 82.1 74.7 46.5 55.2 68.6 82.7 93.3 89.4 73.3 80.5 80.4 89.4
GenPose [36] - - 52.1 60.9 72.4 84.0 - - 79.9 84.4 84.6 89.6
VI-Net [13] - - 50.0 57.6 70.8 82.1 - - 74.1 81.4 79.3 87.3
SecondPose [3] - - 56.2 63.6 74.7 86.0 - - - - - -

Correspondence

NOCS [32] 78.0 30.1 7.2 10.0 13.8 25.2 83.9 69.5 32.3 40.9 48.2 64.4
SPD [27] 77.3 53.2 19.3 21.4 43.2 54.1 93.2 83.1 54.3 59.0 73.3 81.5
SGPA [1] 80.1 61.9 35.9 39.6 61.3 70.7 93.2 88.1 70.7 74.5 82.7 88.4
SAR-Net [10] 79.3 62.4 31.6 42.3 50.3 68.3 86.8 79.0 66.7 70.9 75.3 80.3
DPDN [12] 83.4 76.0 46.0 50.7 70.4 78.4 - - - - - -
IST-Net [16] 82.5 76.6 47.5 53.4 72.1 80.5 93.7 90.8 71.3 79.9 79.4 89.9
Query6DoF [34] 82.5 76.1 49.0 58.9 68.7 83.0 91.9 88.1 78.0 83.1 83.9 90.0
AG-Pose [14] 83.7 79.5 54.7 61.7 74.7 83.1 93.8 91.3 77.8 82.8 85.5 91.6

SpotPose 84.1 81.2 59.7 64.8 81.5 88.2 94.3 92.5 80.4 83.8 87.7 92.2

4. Experiments

4.1. Experimental Setup

Datasets. We conduct experiments on three benchmarks in-
cluding CAMERA25, REAL275 [32] and HouseCat6D [8].
CAMERA25 is a synthetic dataset that comprises 275K
training and 25K testing images across 6 object categories.
These images are generated using a mixed-reality approach,
where foreground objects are rendered against real-world
backgrounds. REAL275 is a real-world dataset consisting
of 4.3K training images from 7 scenes and 2.75K testing im-
ages from 6 scenes, which shares the same object categories
with CAMERA25. HouseCat6D is an emerging real-world
dataset containing 20K training frames from 34 scenes, 3K
testing frames from 5 scenes, and 1.4K validation frames
from 2 scenes, spanning 10 household object categories.
This collection encompasses photometrically challenging
objects with comprehensive viewpoint and occlusion cov-
erage, posing substantial challenges for pose estimation.
Evaluation Metrics. Following previous works [14, 32],
we report the mean Average Precision (mAP) of n◦m cm
for 6D pose evaluation, which indicates the percentage of
prediction with rotation error less than n◦ and translation
error less than m cm. We also report the mAP of 3D Inter-
section over Union (IoUx) at a threshold of x% for joint 6D
pose and 3D size evaluation.
Implementation Details. For a fair comparison, we em-
ploy the same instance masks as previous works [14, 27]
from Mask R-CNN [7]. For data preprocessing, images
are first cropped and then resized to 224 × 224, and the
number of sampled points is Nobj = 1024. For dense im-
age feature extraction, images are fed into the frozen DI-
NOv2 [19], followed by a bilinear interpolation upsampling
to the original resolution for point-wise selection. For dense
point cloud feature extraction, T-Net [21] is composed of a

shared MLP(64,128,256) on each point, a MaxPool across
points and a final MLP(128,64,9) to predict T , while Point-
Net++ [22] is kept consistent with previous works [12, 14]
except for the incorporation of absolute coordinates. The
number of keypoints is N = 96 and the feature dimension
is D = 256. For geometric feature interaction, we adopt
L = 6 blocks by default, with geometric hyper-parameters
σdis = 0.2, σang = 15.0 and K local = 16, Kglobal = 3.
For outlier identification, the threshold η is set to 0.1. In the
loss function, balancing hyper-parameters are λreg = 0.1
and λsize = 0.5. We train our network using the Adam [9]
optimizer with a initial learning rate of 0.001 and a cosine
annealing schedule. All experiments are conducted on a
single RTX3090Ti GPU with a batch size of 24.

4.2. Comparison with State-of-the-art Methods

Results on REAL275 and CAMERA25 datasets. Table 1
shows the comparison of our method with existing direct
regression-based and correspondence-based methods on the
REAL275 and CAMERA25 datasets. From the results we
can see that on the REAL275 dataset, our SpotPose signif-
icantly outperforms all previous methods by a large margin
in all evaluation metrics. In particular, when compared with
the direct regression-based approaches, SpotPose surpasses
SecondPose [3] by 3.5% in 5◦2cm and 6.8% in 10◦2cm,
which also employs DINOv2 [19] as the image backbone.
When compared with other correspondence-based methods,
SpotPose outperforms the previous leading AG-Pose [14]
by 5.0% in 5◦2cm, 6.8% in 10◦2cm and 1.7% in IoU75. In
line with the discussions in Section 3.4, the results demon-
strate that our approach achieves a more accurate pose esti-
mation by extracting shape-sensitive and pose-invariant fea-
tures, while explicitly removing outlier correspondences.
Similar results can be found on the CAMERA25 dataset.
Although SpotPose falls 0.6% below GenPose [36] in the



Table 2. Performance comparison with state-of-the-art methods on
the HouseCat6D dataset.

Method IoU25 IoU50 5◦2cm 5◦5cm 10◦2cm 10◦5cm

FS-Net [2] 74.9 48.0 3.3 4.2 17.1 21.6
GPV-Pose [4] 74.9 50.7 3.5 4.6 17.8 22.7
VI-Net [13] 80.7 56.4 8.4 10.3 20.5 29.1
SecondPose [3] 83.7 66.1 11.0 13.4 25.3 35.7

NOCS [32] 50.0 21.2 - - - -
AG-Pose [14] 81.8 62.5 11.5 12.0 32.7 35.8

SpotPose 89.1 77.0 23.8 24.5 52.3 54.8

DPDN AG-Pose SpotPoseVI-Net

Figure 3. Qualitative comparison of DPDN [12], VI-Net [13], AG-
Pose [14] and our SpotPose on the REAL275 dataset. Red/Green
indicates the predicted/GT results.

5◦5cm metric, it outperforms GenPose in all other metrics,
e.g., 3.1% higher in 10◦2cm. Additionally, we are free from
the costly sampling and filtering process of pose candidates.

Results on HouseCat6D dataset. Table 2 provides the per-
formance comparison on the more challenging HouseCat6D
dataset. Once again, our SpotPose achieves the best perfor-
mance over state-of-the-art approaches by a large margin.
Concretely, SpotPose exceeds SecondPose [3] by 12.8% in
5◦2cm and 10.9% in IoU50, and surpasses AG-Pose [14] by
12.3% in 5◦2cm and 14.5% in IoU50. As for the 10◦5cm
metric, SpotPose outperforms them by almost 20% (19.1%
and 19.0%, respectively). The superior performance on
this more comprehensive and challenging real-world dataset
further demonstrates the effectiveness of our approach.

Qualitative Comparison. Figure 3 shows the qualitative
comparison of SpotPose with the direct regression-based
method, VI-Net [13] and correspondence-based methods,
DPDN [12] and AG-Pose [14] on the REAL275 dataset. As
highlighted in the blue boxes, our SpotPose yields a more
accurate pose estimation across diverse shapes and poses.

Table 3. Ablation studies on the dense point cloud backbone.

Dense Point Cloud Backbone 5◦2cm 5◦5cm 10◦2cm 10◦5cm

PointNet++ [22] 51.4 56.2 78.9 86.6
PoseInv-PointNet++ 59.7 64.8 81.5 88.2

Table 4. Ablation studies on the geometric descriptor. Dis-Ang
denotes the distance- and angle-based geometric descriptor.

Geometric Descriptor
5◦2cm 5◦5cm 10◦2cm 10◦5cm

Local Global

None None 55.8 62.0 77.0 85.0
Dis-Ang Dis-Ang 59.7 64.8 81.5 88.2

None Dis-Ang 58.5 64.0 79.0 85.9
PPF [5] Dis-Ang 58.0 62.6 80.9 87.4

Relative [14] Dis-Ang 56.4 61.7 80.2 86.7

Dis-Ang None 59.2 65.0 79.6 86.9
Dis-Ang HP-PPF [3] 59.3 64.6 80.5 87.4
Dis-Ang Relative [14] 58.0 63.8 78.1 85.4

4.3. Ablation Studies

In this section, we conduct comprehensive ablation studies
to shed more light on the superiority of our method on the
REAL275 dataset.
Efficacy of Pose-invariant Feature Extraction. In order to
validate the necessity of pose-invariant feature extraction,
we first conduct ablation studies on the dense point cloud
feature extractor in Table 3. The results reveal a signifi-
cant performance drop of 8.3% in 5◦2cm when replacing
the proposed pose-invariant PoseInv-PointNet++ with the
original pose-sensitive PointNet++ [22], highlighting the ef-
fectiveness of extracting inherently pose-invariant features.
We further conduct comprehensive ablation studies on local
and global geometric descriptors in Table 4. As seen from
the table, when the local geometric descriptor is replaced
from our pose-invariant Dis-Ang to the pose-sensitive rela-
tive position embedding adopted by AG-Pose [14], perfor-
mance drops by 3.3% in 5◦2cm. And when using other
pose-invariant descriptors, such as PPF [5], or even omit-
ting geometric descriptors to ensure pose-invariance, per-
formance in 5◦2cm is still higher than the relative position
embedding. A similar trend can be observed in the ablation
studies of the global geometric descriptor, where the pose-
sensitive relative position embedding consistently performs
worse than the pose-invariant HP-PPF [3] and Dis-Ang in
all metrics. These results strongly demonstrate the essen-
tiality of pose-invariant features, which can facilitate corre-
spondence prediction and lead to a more precise object pose
estimation performance.
Efficacy of Shape-sensitive Feature Interaction. Table 5
provides the performance comparison of different local and
global feature interaction strategies. It can be observed that
without feature interaction, performance drops by 12.0%
in 5◦2cm, indicating the importance of feature interaction



Table 5. Ablation studies on the strategies of feature interaction.

Feature Interaction
5◦2cm 5◦5cm 10◦2cm 10◦5cm

Local Global

None None 47.7 55.1 70.6 80.5
Attention Attention 59.7 64.8 81.5 88.2

None Attention 56.3 62.0 77.6 85.2
AvgPool Attention 57.7 62.6 79.0 85.8

Attention None 51.4 58.7 72.6 82.6
Attention AvgPool [14] 54.4 59.7 77.5 84.6

Table 6. Impact of the number of geometric interaction blocks.

Block Number L 5◦2cm 5◦5cm 10◦2cm 10◦5cm

0 47.7 55.1 70.6 80.5
2 54.7 60.9 74.7 82.8
4 56.0 62.2 79.9 88.1
6 59.7 64.8 81.5 88.2
8 57.9 63.9 79.9 87.9

from a holistic perspective. For local feature interaction,
we experiment with the average pooling (AvgPool) opera-
tion, which performs better than no interaction but still lags
behind the attention mechanism, which we attribute to the
fact that simple AvgPool cannot adequately capture the de-
tailed structure of local parts. For global feature interac-
tion, when keypoint-wise features are simply concatenated
with the globally averaged features yielded via an AvgPool,
as in AG-Pose [14], performance drops by 5.3% in 5◦2cm.
The results indicate that this approach fails to capture the
holistic structure information as thoroughly as the atten-
tion mechanism, limiting the shape-sensitivity of features.
Additionally, as shown in Table 4, geometric structure em-
bedding can facilitate the shape-sensitive interaction among
features, leading to a 3.9% performance improvement in
5◦2cm. We further evaluate the impact of varying num-
ber L of geometric interaction blocks in Table 6. As the
number of blocks increases, the performance of pose esti-
mation improves, reaching a saturation at six layers. Fur-
ther increasing the block number does not yield additional
performance gains, but instead increases the computational
overhead. Therefore, we choose L = 6 by default.
Efficacy of Outlier Identification and Removal. We first
conduct ablation studies on outlier-aware correspondence
prediction in Table 7. When outlier scores are not predicted,
all correspondences are indiscriminately learned, which
can cause the network to be distracted by outlier points
and challenging correspondences. As shown in the table,
without outlier-awareness, performance drops by 9.2% in
5◦2cm. Even with the RANSAC [6] algorithm for outlier
removal, the pose estimation precision remains suboptimal.
These results highlight the necessity of explicit identifica-
tion and removal of outliers. Table 8 further present the
performance and time consumption comparison of different
pose fitting algorithms. When the Umeyama [28] algorithm

Table 7. Ablation studies on outlier-aware correspondence pre-
diction. Without outlier-awareness, all correspondences are super-
vised by Lnocs

n and used for pose fitting. * denotes results with the
RANSAC algorithm.

Correspondence Prediction 5◦2cm 5◦5cm 10◦2cm 10◦5cm

w/o Outlier-Aware 50.5 56.5 76.4 85.0
w/o Outlier-Aware* 53.1 59.4 77.2 85.8

w/ Outlier-Aware 59.7 64.8 81.5 88.2

Table 8. Ablation studies on the pose fitting algorithm. OR indi-
cates outlier removal by applying a threshold on the outlier scores.
We also report the average pose fitting time per image.

Pose Fitting 5◦2cm 5◦5cm 10◦2cm 10◦5cm Time (ms)

Umeyama 46.4 51.4 68.0 78.6 1.55
w/ RANSAC [6] 58.0 62.4 81.3 88.0 6.50

Umeyama + OR 59.7 64.8 81.5 88.2 1.97
w/ RANSAC [6] 59.7 64.8 81.5 88.2 4.94

Deep Estimator [12] 57.1 64.0 78.5 87.6 6.41

is applied on all correspondences, performance is severely
affected by outliers, with only 46.4% in 5◦2cm. RANSAC
improves performance to 58.0% in 5◦2cm, but the pose fit-
ting time increases from 1.55ms to 6.50ms due to the need
for numerous iterations. In contrast, we identify and re-
move outliers with a lightweight outlier predictor, achieving
59.7% in 5◦2cm with a faster pose fitting speed of 1.97ms
per image. Adding RANSAC does not lead to further per-
formance improvements, but rather slows down the pose fit-
ting process, indicating the effectiveness and efficiency of
the proposed outlier predictor. We also experiment with a
deep estimator [12] for pose fitting, which leads to a 2.6%
drop in 5◦2cm, exhibiting a weaker robustness to outliers.

5. Conclusion

In this work, we perform a comprehensive analysis of
the existing two-stage correspondence-based category-level
pose estimation paradigm and introduce two core essentials:
shape-sensitive and pose-invariant feature extraction to fa-
cilitate transformation learning during the correspondence
prediction stage, and outlier correspondence removal to fa-
cilitate robust pose estimation during the pose fitting stage.
Based on these insights, we propose a simple yet effective
approach called SpotPose, which achieves superior perfor-
mance with no bells and whistles. Extensive experimental
results on three challenging benchmarks demonstrate the ef-
fectiveness of the proposed method.
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